FORMA DEL ESPACIO
La forma del universo es un nombre informal de un tema de investigación que busca determinar la morfología del universo dentro de la cosmología física, que es la ciencia encargada de estudiar el origen, la evolución y el destino del Universo. Los cosmólogos y los astrónomos describen la geometría del universo incluyendo dos modalidades: la geometría local, es decir, aquella referida a la forma del universo observable, y la geometría global que trata de describir el espaciotiempo del universo completo.
Geometría local (curvatura espacial)
Existen tres categorías para las posibles geometrías espaciales de curvatura constante, dependiendo del signo de la curvatura. Si la curvatura es exactamente cero, entonces la geometría local es plana; si es positiva, entonces la geometría es esférica, y si es negativa entonces la geometría local es hiperbólica.
La geometría local del universo se determina aproximadamente si Omega es menos que, igual a o mayor de
1. De arriba hacia abajo: un universo esférico ("riemanniano" o de curvatura positiva), un universo hiperbólico ("lobachevskiano" o de curvatura negativa) , y un universo plano o de curvatura 0.
La geometría del universo está usualmente representada en el sistema de distancia apropiada, según el cual la expansión del universo puede ser ignorada.
Asumiendo que el universo es homogéneo e isótropo, la curvatura del universo observable, o de la geometría local, está descrita en una de las tres geometrías "primitivas":
Geometría euclidiana de 3 dimensiones , anotada generalmente como E³
Geometría esférica de 3 dimensiones con una pequeña curvatura, anotada generalmente como S³.
Geometría hiperbólica de 3 dimensiones con una pequeña curvatura, generalmente anotada como H³.
Universo plano
En un universo plano, todas las curvaturas locales y la geometría local es plana. En general, puede ser descrita por el espacio euclídeo, sin embargo hay algunas geometrías espaciales que son planas y limitadas en una o más direcciones. Esto incluye, en dos dimensiones, el cilindro, el toro, y la banda de Möbius. Espacios similares en tres dimensiones (como la botella de Klein) existen también.
Un universo posiblemente curvo está descrito por la geometría esférica, y puede ser pensado como una hiperesfera tridimensional.
Universo esférico
Un universo posiblemente curvo está descrito por la geometría esférica, y puede ser pensado como una hiperesfera tridimensional.
Uno de los esfuerzos en el análisis de la información de la WMAP es detectar un múltiple adosado mutuo de imágenes del universo distante en la radiación de fondo de microondas cósmicas. Asumiendo que la luz posee suficiente tiempo desde su origen para viajar por un universo limitado, muchas imágenes pueden ser observadas. Cuando los resultados y el análisis no corresponden a una topología limitada, y si el universo es limitado, entonces la curvatura espacial es pequeña, tal como la curvatura espacial de la Tierra es pequeña comparada con un horizonte de mil kilómetros o más.
Universo hiperbólico
Un universo hiperbólico (frecuente pero confusamente llamado "abierto") está descrito por la geometría hiperbólica, y puede creerse como un equivalente tridimensional de una forma de una montura infinitamente extendida. Para la geometría local hiperbólica, varios de los posibles espacios tridimensionales son informalmente llamados topologías de cuerno.